
DEMONSTRATION OF PROVSQL UPDATE PROVENANCE

THROUGH TEMPORAL DATABASES

Albert Widiaatmaja, Pierre Senellart

École Normale Supérieure (ENS), National University of Singapore (NUS)
ÉCOL E NORMAL E
S U P É R I E U R E

DEMONSTRATION OF PROVSQL UPDATE PROVENANCE

THROUGH TEMPORAL DATABASES

Albert Widiaatmaja, Pierre Senellart

École Normale Supérieure (ENS), National University of Singapore (NUS)
ÉCOL E NORMAL E
S U P É R I E U R E

INTRODUCTION

ProvSQL extends the PostgreSQL database system by
introducing support for (m-)semiring provenance com-
putation for retrieval (SELECT) queries, implemented
using provenance circuits which are arithmetic cir-
cuits where the gates correspond to the operators of
(m-)semirings. In this demonstration, we further en-
hanced ProvSQL by enabling provenance tracking for
update operations (DELETE, INSERT, UPDATE) and illus-
trated its practical utility by implementing a temporal
database capable of standard temporal queries includ-
ing time travel (inspecting past database states), history
tracking (monitoring tuple states over time), and undo
(reversing previous updates).

IMPLEMENTATION OF UPDATE

PROVENANCE

Provenance for updates can be supported by annotat-
ing tuples with operations that capture the type of mod-
ification [1]. In ProvSQL, we implemented these anno-
tations through provenance circuit gates via statement-
level triggers based on the following approach:
• DELETE: Create a ⊖ gate, and move the gate repre-
senting the deleted tuple to be its child.

• INSERT: Create a ⊗ gate, and move the gate repre-
senting the inserted tuple to be its child.

• UPDATE: Create a ⊖ gate, and move the gate repre-
senting the old tuple to be its child. Create a ⊗ gate,
and move the gate representing the new tuple to be
its child.

Example
Suppose we execute the following delete operation on
table t shown in Table 1. a and b are ids of gates in
the provenance circuit which represent their respective
tuple.
DELETE FROM t;

id provsql
0 a
1 b

Table 1: Table t

In the provenance circuit, gates a and b are replaced
by d, a monus gate with left child a and right child c,
and e, a monus gate with left child b and right child c,
respectively as shown in Figure 1.

d
monus gate a⊖ c

a
tuple (id = 0)

c
delete query

Figure 1: Provenance of tuple (id = 0) after deletion

Table t will be updated as shown in Table 2.

id provsql
0 d = a⊖ c
1 e = b⊖ c

Table 2: Table t after deletion

Metadata of the executed query including the SQL
code of the update operation, the user performing
it and its timestamp are stored in a dedicated up-

date_provenance metadata table.

IMPLEMENTATION OF UNDO

By supporting provenance for updates, we are also
able to implement an UNDO operation, which reverts
the effect of a previous update. In ProvSQL, UNDO
is implemented by replacing any occurrences of c
with c ⊖ u in the provenance circuit, where c and u
represent the query to undo and the UNDO query re-
spectively, as illustrated in Figure 2. UNDO is also a
tracked operation with query metadata inserted into
update_provenance table, allowing UNDO to be un-
done as well.

original circuit

⊗

a c

=⇒

after undo

⊗

a ⊖

c u
Figure 2: Replacing c with (c⊖ u) in the provenance circuit

TEMPORAL DATABASES THROUGH

PROVENANCE

We implemented a temporal database by inter-
preting the provenance circuit using the union-of-
intervals semiring U , the set of finite unions of
pairwise-disjoint intervals representing validity pe-
riods of database tuples. The union-of-intervals
semiring is implemented in ProvSQL using a set
of User-Defined Functions (UDFs) which operate
on timestamp multirange fields (tstzmultirange in
PostgreSQL).

Example
Suppose we run the query below.
CREATE TABLE test (id INT);

SELECT add_provenance(’test’);

INSERT INTO test VALUES (1), (2), (3);

DELETE FROM test WHERE id = 2;

UPDATE test SET id = 4 WHERE id = 3;

SELECT *, union_intervals(

provenance (),

’time_validity ’

) FROM test;

We will obtain the result in Table 3.
id union_intervals provsql
1 {["2025-01-31 07:22:41.074735+00",)} 6bb1090e-...

2 {["2025-01-31 07:22:41.074735+00",

"2025-01-31 07:23:53.652126+00")}

19014d56-...

3 {["2025-01-31 07:22:41.074735+00",

"2025-01-31 07:24:23.929575+00")}

8c09ee82-...

4 {["2025-01-31 07:24:23.929575+00",)} 222faf52-...

Table 3: union_intervals example

We see that union_intervals returns the multi-
range representing the valid time of each tuple. Us-
ing the valid time generated by union_intervals,
we can support temporal functions such as:

• get_valid_time: returns the valid time interval of
a given tuple in a table,

• timetravel: returns the state of a table at a spec-
ified timestamp,

• timeslice: returns all tuples that were valid within
a given time range, and

• history: reveals the sequence of states of a spe-
cific tuple over time.

DEMONSTRATION SCENARIO

We have the following tables of France govern-
ment ministers across time retrieved from Wiki-
data through its SPARQL endpoint: person, holds,
party, and person_position.
We can run temporal queries and obtain the results
below.
-- What were the ministers during Emmanuel Macron ’

s presidential terms?

SELECT name , validity FROM

timeslice(’person_position ’, ’2017 -05 -16’, NOW()

)

AS (name TEXT , position TEXT , validity

tstzmultirange , provsql uuid)

ORDER BY validity;

name validity
Catherine Colonna {["2005-06-02 00:00:00+00","2007-05-15 00:00:00+00"),

"2022-05-20 00:00:00+00","2024-01-11 00:00:00+00")}

. . .

Table 4: Ministers during Emmanuel Macron’s presidential
terms

-- Who were the Ministers of Justice over time?

SELECT name , validity FROM

history(’person_position ’, ARRAY[’position ’],

ARRAY[’Minister of Justice ’])

AS (name TEXT , position TEXT , validity

tstzmultirange , provsql uuid)

ORDER BY validity;

name validity
Dominique Joseph Garat {["1792-10-09 00:00:00+00",

"1793-03-19 00:00:00+00")}

Charles Joseph Mathieu Lambrechts {["1797-09-24 00:00:00+00",

"1799-07-20 00:00:00+00")}

. . .

Table 5: History of Ministers of Justice

We can track updates applied to the database.
-- Fire François Bayrou and replace him with

Pierre Senellart and undo the change

DELETE FROM holds WHERE position=’Prime Minister

of France ’ AND id IN

(SELECT id FROM person WHERE name=’François

Bayrou ’);

INSERT INTO person(id , name , gender) VALUES

(100000 , ’Pierre Senellart ’, ’male’);

INSERT INTO holds(id , position , country) VALUES

(100000 , ’Prime Minister of France ’, ’FR’);

-- What is the current government composition?

SELECT name , position FROM timetravel(’

person_position ’, NOW())

AS tt(name TEXT , position TEXT , validity

tstzmultirange , provsql uuid)

ORDER BY position;

name position
Pierre Senellart Prime Minister of France
Élisabeth Borne Minister of National Education
Philippe Baptiste research minister
Rachida Dati Minister of Culture (France)
. . .

Table 6: Composition of government after update

We can also undo an update operation, even an
undo itself.
-- Undo the changes: Pierre Senellart is out ,

François Bayrou is in

SELECT undo(provenance ()) FROM update_provenance;

-- What were the positions of François Bayrou over

time , now he has been fired and then reinstated?

SELECT position , union_tstzintervals(provenance (),

’time_validity_view ’) valid

FROM person JOIN holds ON person.id=holds.id

WHERE name=’François Bayrou ’ order by valid;

position valid provenance
Prime Minister of
France

{["1951-05-25 00:00:00+00",

"2025-06-23

06:32:11.894213+00"],

["2025-06-23

06:32:18.056573+00", )}

d85871bf-...

Minister of National
Education, Higher
Education and
Research

{["1993-03-29 00:00:00+00",

"1997-06-04 00:00:00+00"]}
968c45c0-...

Minister of Justice {["2017-05-17 00:00:00+00",

"2017-06-21 00:00:00+00"]}
facb4aab-...

. . .

Table 7: Positions of François Bayrou over time

The dataset and example ProvSQL queries are
available from https://provsql.org/temporal_

demo.

References

[1] Pierre Bourhis et al. “Equivalence-Invariant Algebraic Provenance for Hyperplane Update Queries”. In: Proceedings of the 2020 International Conference on Management of Data, SIGMOD Conference 2020, online
conference [Portland, OR, USA], June 14-19, 2020. Ed. by David Maier et al. ACM, 2020, pp. 415–429. DOI: 10.1145/3318464.3380578. URL: https://doi.org/10.1145/3318464.3380578.

Contact: w.albertariel@u.nus.edu or pierre@senellart.com


