
Fast Capture of Cell-Level Provenance in Numpy
Jinjin Zhao 1 Sanjay Krishnan 1

1University of Chicago

Introduction and Motivation

Capturing cell-level provenance from array operations can significantly improve the

governance, reproducibility, and overall quality of data science pipelines. However,

existing data systems still face significant challenges in automatically capturing

cell-level provenance.

1. Changing APIs. The shift from pandas version 1.x to 2.x introduced significant

changes, including the removal of the ‘inplace=True‘ parameter in certain

methods, affecting provenance tracking strategies. Any provenance capture

system must be flexible enough to adapt seamlessly to evolving APIs.

2. Diverse Operations. Data pipelines frequently involve diverse operations such

as complex reshaping (e.g., NumPy’s ‘reshape‘ and ‘transpose‘ functions),

convolution functions (e.g., pandas’ ‘apply‘ method), and transformations

utilizing machine learning models (e.g., predictions from scikit-learn models).

Capturing provenance across these varied operations requires a more

generalized and flexible provenance model.

3. Scale of Datasets. Many modern datasets, i.e. large-scale climate sensor

datasets, often contain extremely large arrays - on the order of millions of cells.

Efficient cell-level provenance capture mechanisms must maintain performance

at this scale.

Figure 1. Motivating Example. Visual illustration of two non-standard array operations in imaging

and scientific applications.

We present a prototype cell-level provenance capture tool for the numpy library

to address these issues. It captures provenance by annotating over core low-level

operations [addressing (1), (2)], and scales well up to 100 million cells [addressing

(3)].

Provenance CaptureWorkflow

We can show a typical example of how to capture provenance with this prototype.

Figure 2. Example of provenance capture.

Explanation of Steps

1. Before an operation is performed, we first create an array using this data type.

2. Next, we initialize provenance tracking with the initialize() function.

3. We can perform typical numpy transformations on the array.

4. After the transformation, the parents property of every output cell contains

the cells indices of the starting array that contributed to its value.

Abstract

Significant challenges arise in capturing cell provenance of array operations,

including: (1) rapidly evolving APIs, (2) diverse operation types, and (3) large-

scale datasets.

To address these challenges, our work presents a prototype annotation system

designed for arrays, capturing cell-level provenance specifically within the numpy
library.

With this prototype, we explore straightforward memory optimizations that

substantially reduce annotation latency.

This tool is part of the larger DSLog system for array provenance management

[ICDE’24].

Basic Provenance Capture Internals

CellProvenance contains typical scalar data and a list of cell indices indicating

dependencies from previous cells

annotated data type
class CellProvenance:

data_value: Any
parents: List[Indices]

The parents property is initialized with the original array indices; for instance, the

top-left cell in the array is annotated with the index (0, 0).

provenance initialization
c.parents = [(c.index1 , c.index1)]

Each array operation in the numpy library is extended so that the parents property

of the output value becomes the union of the parents properties from the input

values. This effectively captures a type of provenance for all numpy operations.

provenance operation
c.parents = Union(a.parents , b.parents)

Low-Level Memory Management

To overcome performance limitations, we introduce the tracked_float data type.

Each provenance annotation consists of three 32 bit integers: the first indicates

the array ID, and the second and third represent array indices, uniquely identifying

cells for arrays with up to two dimensions (though this strategy generalizes to

higher dimensions).

These tuples are stored in a C array, with the first annotation directly embedded in

the annotated_cell, and subsequent annotations stored as pointers to dynami-

cally allocated memory buffers.

To implement provenance capture for all numpy operations using this data structure,

we only need to adjust two primitive data operations. For unary operations, we

copy the prov_id and pointer values to the output. For binary operations, we

concatenate the prov_id arrays from both inputs.

Figure 3. Diagram of DSLog’s tracked_float memory structure.

Microbenchmark Experiment Results

We compare DSLog against Python-only and C without buffers baselines to demon-

strate the relative improvements provided by our performance optimizations. We

measure the execution time cost of initializing a tracked array, and overhead of

provenance capture over common data science transformation patterns. These

experiments are performed on arrays up to 100 million cells.

Figure 4. Startup cost of provenance annotation.

Figure 5. Execution overhead of provenance annotation on two different operation patterns.

Although capturing provenance at the cell level inherently carries performance

overhead, we have shown that careful memory management can significantly

mitigate provenance capture costs compared to naive implementations. DSLog

adds less than 50 seconds of overhead on aggregate operations on 100 million

array cells.

Vision and FutureWork

[Vision] A Universal Provenance System. Within a single data science project, data

frequently transitions between these structures. We can extend current ideas to

capture provenance across different data structures for comprehensive end-to-end

cell-level provenance tracking for all data transformations in a project. This raises

broad research questions on:

Privacy Risks of Centralized Provenance Governance

Provenance as Proof-of-Work

Provenance for Data Science Automation and Debugging

[Future Work] Optimizing Provenance Capture. Additional opportunities exist

to enhance the performance of provenance capture in DSLog. Some techniques

include:

Parallelize Cell Capture

Improved Predictive Memory Allocation

[Future Work] Provenance Capture with Uncertainty. Can DSLog capture incom-

plete or uncertain provenance, and how could that information be useful?

https://jinjinz.com ProvenanceWeek2025 j2zhao@uchicago.edu

https://jinjinz.com
mailto:j2zhao@uchicago.edu

