
 b2 cnt A.rid B.rid
 f 2 1 1
 f 2 2 1
 c 2 1 2
 c 2 2 2

b2 count() list(rid)
 f 2 [1,2]
 c 2 [3,4]
 a2 b1 b2 rid
 2 6 f 1
 3 6 f 2
 2 1 c 3
 3 1 c 4 LM

T1 = Ɣ
b2,count(*)

(A⛌B)

Q+ = T1 ⋈ 𝚷
A.rid,B.rid,b2

(A⛌B)

Query Rewrite

BA

⛌

Ɣ

DBMSes
Rewrite

FuncLib

Slice()

Gather()

Scatter()

...

Offline

At Runtime

b2 cnt
 f 2
 c 2

Q = Ɣ
b2,count(*)

(A⛌B)

Plan
Rewrite

Ɣ+.GetData, [0,1]
Ɣ+.Sink, [1,1]
⛌+.Exec, 0, 1, 2
Ɣ+.Sink, [0,0]
⛌+.Exec, 0, 0, 2

L
o
g

Query-Level Operator-Level Function-Level

What? PERM-style query
rewriting

Pros: DBMS agnostic
Cons: Logically annotates Q

with prov annotations
Accumulated annotations
slow down exec

A B

a2 rid
 2 1
 3 2

b1 b2 rid
 6 f 1
 1 c 2

⛌

Ɣ

LM

 a2 rid b1 b2 rid
 2 1 6 f 1
 3 2 6 f 1
 2 1 1 c 2
 3 2 2 c 2

b2 cnt
 f 2
 c 2

⛌+

Ɣ+
GetData(...) { ...

log({‘Gather’,idx});

... }

Sink(...) { ...

log({‘UpdateState’,idx});

...}

Execute(...) { ...

log({‘Reference’,

rhs_offset,

lhs_offset, count});

... }
BA

Ɣ+⛌+

What? PERM-style rewrites per-operator +
new LM operator to strip away
annotations.

Pros: Doesn’t accumulate annotations during
execution

Cons: Creating annotations (blue columns) still
expensive at pipeline breakers
Must modify query planner

What? Persists program variables that
already encode data-movement
(lineage) during execution.

Pros: Logs existing variables, avoids
annotations

Cons: Must modify engine
implementation

Lineage Capture Trade-offs:
A Case Study in DuckDB
Haneen Mohammed | Columbia University, ham2156@columbia.edu
Eugene Wu | Columbia University, ewu@cs.columbia.edu

Best Lineage Capture Method in High Performance
Systems?

Experiment Design
● Lineage capture methods implemented in different systems, not comparable

● Implemented three methods in DuckDB for apples-to-apples comparison

● Engineering effort estimated by number of files modified

R
u

nt
im

e
O

ve
rh

ea
d

 (
%

)

Engineering Effort

1000

100

10 Function-Level
✕

Operator-Level
✕

Query-Level
 ✕

We compare three main methods that instrument queries at different granularities

R
es

ul
ts

Ta
ke

aw
ay

s ● Query-level: DBMS-agnostic but too slow

● Operator-level: Efficient for pipelined operators and integrates cleanly with extensible query planner

● Function-level: Faster but requires invasive DBMS changes

● Hybrid of Function- and Operator-level may offer the best trade-off between performance and engineering effort.

 # unique groups Varying |FT|
𝑄 = 𝛾𝑧,𝑠𝑢𝑚(𝑣) (𝑇), |T|=10M Q=PT⋈FT, |PT|=100K

Methods Methods

