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• High computational costs for computing explanations for ML 
models – Shapley value-based explanation involves evaluating all of 
the model’s weights, which can grow exponentially with the number of 
features.


• Expensive recursion overhead from evaluating ML model encoded 
in Datalog - ML models can be expressed as recursive Datalog queries 
involving nested, mutual, and non-linear recursion.
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 B. Objective
• Introduce a provenance-based technique 

that efficiently computes all of the model’s 
weights necessary to compute 
explanations.


• Capture provenance within a reasonable 
computational cost, in a single query 
evaluation queue.

𝑄:

• ProvML is an extension of Recursive-aggregate SQL (RaSQL) built 
on top of Apache Spark. RaSQL uses a distributed semi-naïve 
evaluation for efficient computation. We leverage

• efficient fixpoint evaluation,

• its support for aggregation in recursion and

• the computational benefits of query execution in a distributed data 

processing environment.

• Developed the algorithm that rewrites the input Datalog program for an ML model to a query in SQL that returns all the model weights by supporting 
window functions & subqueries for efficiently capturing provenance for recursive-aggregate queries. Currently implementing it in PUG.

• Developing ProvML that supports executing recursive-aggregate SQL that has window functions and subqueries necessary for maintaining the 

provenance of 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 and 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡.
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Figure 2: Proposed provenance framework

Figure 3: An example Datalog program r1,* of BGD for LR
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Table 1: Input data and query result of 𝑄 over example inout data - bike sharing dataset

• Input: A Datalog program 𝑄 that encodes an ML algorithm and a 
training dataset Train𝑣 [3]


• Output: All the model’s weights

• Extend PUG [2], a framework that captures provenance for 

Datalog, to instrument 𝑄 into 𝑄′  in SQL.

• Extend RaSQL [1], a recursive-aggregate query engine, for 

computing the model’s weights

 C. Method   D. ProvML

• predictProv is generated based on r1,4 by adding all the existential 
variables in the body to the head and express sum<C,Y0> in a 
window function.


• gradient is generated based on r1,3 by replacing the body atoms with 
predictProv, including all the corresponding variables in the body to 
the head atom, and converting sum<I,G0> to a window function.
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Figure 1: Image depicting the need 
for explanations

𝑄′:

Figure 4: Snippet of rewritten SQL

Table 2: Sample 𝑄′ output - result of predictProv and gradientProv with example data

E. PUG and ProvML Ongoing Key Enhancements

 A. Motivation

• ProvML ensures the intermediate result size from model training 
is small by keeping the result from the previous iteration only, 
which is sufficient to compute the model’s weights for the current 
iteration.


• Reduced recursion overhead – our method eliminates mutual 
recursion occurring in Figure 3 where 𝑟1,2 invokes 𝑟1,3 which 
invokes 𝑟1,4, and 𝑟1,4, in turn updates the model.

𝑄′ (output)

J C CF P

1 hum hum 64.7081

1 hum humtemp 64.7079

1 temp humtemp 29.8395

1 temp temp 29.8397

predictProv
J I C CF V P Y YP
0 0 hum hum 0.8058 0.01 985 0.0081
0 1 hum hum 0.6961 0.01 801 0.0070
0 1 hum humtemp 0.6961 0.01 801 0.0106
0 0 hum humtemp 0.8058 0.01 985 0.0115
0 0 temp humtemp 0.3442 0.01 985 0.0115
0 1 temp humtemp 0.3635 0.01 801 0.0106
0 0 temp temp 0.3442 0.01 985 0.0034
0 1 temp temp 0.3635 0.01 801 0.0036

gradientProv
J I C CF V P Y YP G0
0 0 hum hum 0.8058 0.01 985 0.0081 -1587.4130
0 1 hum hum 0.6961 0.01 801 0.0070 -1115.1425
0 1 hum humtemp 0.6961 0.01 801 0.0106 -1115.1374
0 0 hum humtemp 0.8058 0.01 985 0.0115 -1587.4075
0 0 temp humtemp 0.3442 0.01 985 0.0115 -678.0661
0 1 temp humtemp 0.3635 0.01 801 0.0106 -582.3193
0 0 temp temp 0.3442 0.01 985 0.0034 -678.0716
0 1 temp temp 0.3635 0.01 801 0.0036 -582.3244


