
Efficient Computation of ML
Explanations Using Provenance

LinkedIn
Personal
Webpage

Nkechi Jennifer Akinwale, Seokki Lee

University of Cincinnati

• High computational costs for computing explanations for ML
models – Shapley value-based explanation involves evaluating all of
the model’s weights, which can grow exponentially with the number of
features.

• Expensive recursion overhead from evaluating ML model encoded
in Datalog - ML models can be expressed as recursive Datalog queries
involving nested, mutual, and non-linear recursion.

 F. References
1. JiaqiGu,YugoHWatanabe,WilliamAMazza,AlexanderShkapsky,MohanYang, Ling Ding, and Carlo Zaniolo. 2019. Rasql: Greater power and performance for big data analytics with recursive-aggregate-sql on spark. In SIGMOD.

2. Seokki Lee, Bertram Ludäscher, and Boris Glavic. 2018. PUG: a framework and practical implementation for why and why-not provenance. VLDB J. (2018).

3. Jin Wang, Jiacheng Wu, Mingda Li, Jiaqi Gu, Ariyam Das, and Carlo Zaniolo. 2021. Formal semantics and high performance in declarative machine learning using Datalog. The VLDB Journal (2021).

 B. Objective
• Introduce a provenance-based technique

that efficiently computes all of the model’s
weights necessary to compute
explanations.

• Capture provenance within a reasonable
computational cost, in a single query
evaluation queue.

𝑄:

• ProvML is an extension of Recursive-aggregate SQL (RaSQL) built
on top of Apache Spark. RaSQL uses a distributed semi-naïve
evaluation for efficient computation. We leverage

• efficient fixpoint evaluation,

• its support for aggregation in recursion and

• the computational benefits of query execution in a distributed data

processing environment.

• Developed the algorithm that rewrites the input Datalog program for an ML model to a query in SQL that returns all the model weights by supporting
window functions & subqueries for efficiently capturing provenance for recursive-aggregate queries. Currently implementing it in PUG.

• Developing ProvML that supports executing recursive-aggregate SQL that has window functions and subqueries necessary for maintaining the

provenance of 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 and 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡.

Used for computing
Explanations

Datalog

Program

𝑄

PUG ProvML
Generate 𝑄′
in SQL that

captures
provenance

Extended recursive
aggregate SQL

engine on Spark

Rewrite All Model
Weights

Generates

Figure 2: Proposed provenance framework

Figure 3: An example Datalog program r1,* of BGD for LR

The model is updated iteratively
using gradient values from r1,3.
The output of this program is a
trained model

Computes the sum
of the raw prediction
values, on all model
training instances

r1,1

r1,2

r1,3

r1,4 Recursive

Datalog

r1,1

r1,2
r1,4

r1,3 Raw gradient values is computed using the
raw prediction values values from r1,4

The model is initialized

Table 1: Input data and query result of 𝑄 over example inout data - bike sharing dataset

• Input: A Datalog program 𝑄 that encodes an ML algorithm and a
training dataset Train𝑣 [3]

• Output: All the model’s weights

• Extend PUG [2], a framework that captures provenance for

Datalog, to instrument 𝑄 into 𝑄′ in SQL.

• Extend RaSQL [1], a recursive-aggregate query engine, for

computing the model’s weights

 C. Method D. ProvML

• predictProv is generated based on r1,4 by adding all the existential
variables in the body to the head and express sum<C,Y0> in a
window function.

• gradient is generated based on r1,3 by replacing the body atoms with
predictProv, including all the corresponding variables in the body to
the head atom, and converting sum<I,G0> to a window function.

switch to
treatment B
(approved
treatment)

Provenance

ML

algorithms

20 credit
approvals

top weather
elements

affecting sales

Input Data

Prediction/Output
Explanations?

Figure 1: Image depicting the need
for explanations

𝑄′:

Figure 4: Snippet of rewritten SQL

Table 2: Sample 𝑄′ output - result of predictProv and gradientProv with example data

E. PUG and ProvML Ongoing Key Enhancements

 A. Motivation

• ProvML ensures the intermediate result size from model training
is small by keeping the result from the previous iteration only,
which is sufficient to compute the model’s weights for the current
iteration.

• Reduced recursion overhead – our method eliminates mutual
recursion occurring in Figure 3 where 𝑟1,2 invokes 𝑟1,3 which
invokes 𝑟1,4, and 𝑟1,4, in turn updates the model.

𝑄′ (output)

J C CF P

1 hum hum 64.7081

1 hum humtemp 64.7079

1 temp humtemp 29.8395

1 temp temp 29.8397

predictProv
J I C CF V P Y YP
0 0 hum hum 0.8058 0.01 985 0.0081
0 1 hum hum 0.6961 0.01 801 0.0070
0 1 hum humtemp 0.6961 0.01 801 0.0106
0 0 hum humtemp 0.8058 0.01 985 0.0115
0 0 temp humtemp 0.3442 0.01 985 0.0115
0 1 temp humtemp 0.3635 0.01 801 0.0106
0 0 temp temp 0.3442 0.01 985 0.0034
0 1 temp temp 0.3635 0.01 801 0.0036

gradientProv
J I C CF V P Y YP G0
0 0 hum hum 0.8058 0.01 985 0.0081 -1587.4130
0 1 hum hum 0.6961 0.01 801 0.0070 -1115.1425
0 1 hum humtemp 0.6961 0.01 801 0.0106 -1115.1374
0 0 hum humtemp 0.8058 0.01 985 0.0115 -1587.4075
0 0 temp humtemp 0.3442 0.01 985 0.0115 -678.0661
0 1 temp humtemp 0.3635 0.01 801 0.0106 -582.3193
0 0 temp temp 0.3442 0.01 985 0.0034 -678.0716
0 1 temp temp 0.3635 0.01 801 0.0036 -582.3244

