
Motivation / Objectives

[1] Yael Amsterdamer, Daniel Deutch, and Val Tannen. 2011. Provenance for
Aggregate Queries. Proceedings of the ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (2011), 153–164.
doi:10.1145/1989284.1989302
[2] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. 2007. Provenance
semirings. In Proceedings of the Twenty-Sixth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems (PODS ’07). ACM,
31–40.
[3] Pierre Senellart, Louis Jachiet, Silviu Maniu, and Yann Ramusat. 2018.
ProvSQL: provenance and probability management in postgreSQL. Proc.
VLDB Endow. 11,12 (Aug. 2018), 2034–2037. doi:10.14778/3229863.3236253

References

• The method provides versatile summarisation of provenance
polynomials, allowing aggregation to be tailored through any
combination of free variables.

• Runs during query execution without post-processing;
• The method is agnostic to the framework used to generate

provenance polynomials.
• Shows good results in reducing provenance polynomials
Next steps include:
• Extending support to nested queries and limited free-attribute

cases;
• Developing visualisation and query tagging to enhance provenance

understanding and filtering.

Highlights and next steps

Paulo Pintor1, Rogério L. Costa2, José Moreira1

University of Aveiro – IEETA (1), Polytechnic of Leiria - CIIC (2)
Contact: paulopintor@ua.pt

Multi-Level Aggregation and Summarisation of Data Provenance

This work is partially funded by National Funds through FCT, under the Scientific Employment Stimulus:
Institutional Call - CEECIN - ST/00051/2018, and projects UIDB/04524/2020 and UID/00127.

ACKNOWLEDGEMENTS

Data Provenance focuses on the annotation of database query results
with information such as the data sources, why a row participates in the
resultset, and how it was obtained. The size of such annotations can
significantly grow as queried data size increases. This work presents a
method for summarising provenance annotations in database queries,
with a focus on aggregations.

Abstract

• Automatic query rewriting to generate multi-level summarisation with
varying levels of detail;

• Identify fixed attributes (columns on the original query) and free
attributes (columns not present in the query from all the tables
involved);

• Chose the best combination between fixed and free attributes, to each
level until get the original result;

• Can also handle subqueries.
• Provenance annotations follow the semiring formalism for SPJU

queries [2], extended to aggregations using the approach in [1];

A simple example:
• Table Orders (Key, Priority, Clerk, Cust, Comment, TotalPrice);
• Original Query: 𝛄priority; count(key) -> count (Orders)

Method

Priority Count Provenance Polynomial
p1 6 𝛿(𝑡1 +𝑡2 +𝑡3 +𝑡10 +𝑡11 +𝑡12)
p2 14 𝛿(𝑡4 +𝑡5 +𝑡6 +𝑡7 +𝑡8 +𝑡9 +𝑡13 +𝑡14+

𝑡15 +𝑡16 +𝑡17 +𝑡18 +𝑡19 +𝑡20)
Table 1: An hypothetical result of Original Query

• From the free attributes we selected two columns Cust and Clerk;
• Query Level 1: 𝛄priority, cust, clerk; count(key) -> count (Orders);

Priority Clerk Count Provenance Polynomial Var
p1 k1 6 𝛿(v1 +v2 +v3) vc1
p2 k2 11 𝛿(v2 + v6 +v7) vc2
p2 k3 3 𝛿(v5) vc3

Table 3: Result of Query Level 2

• Query Level 3: 𝛄priority, sum(count) -> count (Q2);

Priority Count Provenance Polynomial
p1 6 𝛿(vc1)
p2 14 𝛿(vc2 + vc3)

Table 4: Result of Query Level 3

An example with TPC-H (query 10 adapted):
• 𝝅𝑐_𝑐𝑜𝑙𝑠, 𝑛_𝑛𝑎𝑚𝑒, 𝑟𝑒𝑣𝑒𝑛𝑢𝑒,𝑜_𝑐𝑢𝑠𝑡𝑘𝑒𝑦, 𝑜_𝑜𝑟𝑑𝑒𝑟𝑘𝑒𝑦 (𝞂condition (Customer

x Orders x Lineitem x Nation))
• where 𝑐_𝑐𝑜𝑙𝑠 are the columns from Customer, 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 =

𝑙_𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑𝑝𝑟𝑖𝑐𝑒 x (1−𝑙_𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡), and 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 denotes the join and
selection conditions in the query

Figure 1: Summarisation path for Q10

• We used ProvSQL [3] as the framework to test our method;
• Using our method with 4 levels, the size of the provenance

polynomials in the TPC-H example was reduced by approximately
40%.

Figure 1: Some TPC-H queries and their size in KB
with and without Provenance

• This complexity leads to:
• High computational overhead;
• Difficult interpretation for users;

• This work proposes a multi-level summarisation method focused
on aggregations, aimed at:
• Reducing provenance size
• Preserving the structure of provenance polynomials
• Supporting varying levels of detail

• A single result may have a provenance polynomial like: t1 + (t2 . (t3 +
t4)) + ((t5 . t6). (t7 + t8 + t9) + ... + (tn-2 . (tn-1 + tn)) - N terms, nested
structure and many variable occurrences

Priority Cust Clerk Count Provenance Polynomial Var
p1 c1 k1 3 𝛿(𝑡1 +𝑡2 +𝑡3) v1
p2 c1 k2 6 𝛿(𝑡4 +𝑡5 +𝑡6 +𝑡7 +𝑡8 +𝑡9) v2
p1 c2 k1 2 𝛿(𝑡10 +𝑡11) v3
p1 c3 k1 1 𝛿(𝑡12) v4
p2 c2 k3 3 𝛿(𝑡14 +𝑡13 + 𝑡15) v5
p2 c3 k2 4 𝛿(𝑡16 +𝑡17 + 𝑡18 + 𝑡19) v6
p2 c3 k2 1 𝛿(𝑡20) v7

Table 2: Result of Query Level 1 (nomenclature in [1] simplified)

• Column Var represents the provenance polynomials identifier;
• The identifiers enable retrieval at varying levels of detail;
• For the next level we selected Clerk;
• Query Level 2: 𝛄priority, clerk; sum(count) -> count (Q1);
• For the next levels we need to use the operator “sum” to keep

the original query results.

	Slide 1
	Slide 2

